A solid cube of side 2a and mass M is sliding on a frictionless surface with uniform velocity v as in Figure P11.55a. It hits a small obstacle at the end of the table, which causes the cube to tilt as in Figure P11.55b. Find the minimum value of v such that the cube falls off the table. Note that the moment of inertia of the cube about an axis along one of its edges is 8Ma2/3. (Hint: The cube undergoes an inelastic collision at the edge.) |

New search. (Also 5349 free access solutions) |